.
 

Trigonometri

Trigonometri (dari bahasa Yunani trigonon = tiga sudut dan metro = mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut segi tiga dan fungsi trigonometrik seperti sinus, cosinus, dan tangen. Trigonometri memiliki hubungan dengan geometri, meskipun ada ketidaksetujuan tentang apa hubungannya; bagi beberapa orang, trigonometri adalah bagian dari geometri.


Hubungan fungsi trigonometri

\sin^2 A + \cos^2 A = 1 \,
1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 
A\,
1 + \cot^2 A = \csc^2 A \,
\tan A = \frac{\sin A}{\cos A}\,

Penjumlahan

\sin (A + B) = \sin A \cos B + \cos A \sin B 
\,
\sin (A - B) = \sin A \cos B - \cos A \sin B 
\,
\cos (A + B) = \cos A \cos B - \sin A \sin B 
\,
\cos (A - B) = \cos A \cos B + \sin A \sin B 
\,
\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan
 A \tan B} \,
\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan
 A \tan B} \,

Rumus sudut rangkap dua

\sin 2A = 2 \sin A \cos A \,
\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A -1 =
 1-2 \sin^2 A \,
\tan 2A = {2 \tan A \over 1 - \tan^2 A} = {2 
\cot A \over \cot^2 A - 1} = {2 \over \cot A - \tan A} \,

Rumus sudut rangkap tiga

\sin 3A = 3 \sin A - 4 \sin^3 A \,
\cos 3A = 4 \cos^3 A - 3 \cos A \,

Rumus setengah sudut

\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos 
A}{2}} \,
\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos 
A}{2}} \,
\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos 
A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \,

0 komentar:

Posting Komentar